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Abstract. A comparison is made between classical and quantum time-dependent passage 
through a potential barrier. The classical transmittance is defined by associating a classical 
ensemble to the quantum wavepacket. The conditions determining the differences between 
the classical and the quantum results are discussed. The classical results improve previous 
semiclassical methods. 

1. Iutroductiou 

While the classical transmittance curve for a single particle has a step shape (it cannot 
pass the barrier at energies below the maximum of the barrier), the quantum transmit- 
tances for stationary scattering, i.e. for definite incident momentum, are in general 
smooth and allow for barrier penetration at lower energies. Accordingly, tunnelling is 
regarded as a purely quantum phenomenon in any quantum mechanics treatise. 

However, when considering time-dependent scattering, wavepacket tunnelling, i.e. 
the passage through the barrier at incident average energy (expectation value) lower 
than the barrier, admits a classical explanation. It is possible, with the restrictions 
explained later, to reproduce with high accuracy the quantum transmittance curves 
even below threshold (see figure l ( a )  and figure l ( b ) )  by associating to the wavepacket 
a classical ensemble in phase space rather than a single particle. We shall derive a 
simple formula allowing us to estimate the transmittance classically by evaluating the 
fraction of initial ensemble points with energy above the maximum of the barrier for 
initial Gaussian wavepackets. We shall also discuss the conditions favouring the 
differences between the classical and the quantum results. 

Figure 1. Transmittance as a function of f  and I :  ( a )  classical; ( b )  quantum. The surfaces 
have been constructed from 625 points in the f - r  plane. 
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2. Comparison between classical and quantum transmittances 

We shall use, to fix ideas and make comparisons with some analytical results, a 
particular potential in a series of calculations 

V= Vu/cosh2(ax). (1) 
However, our treatment can be applied quite generally to any potential by determining 
its characteristic length I la ,  and its maximum value Vu, as shown below. Unless stated 
otherwise Vu will be considered positive. 

It is convenient to write the time-dependent Schrodinger equation in a dimensionless 
form: 

iaY/ar= -a2Y/az2t  UT (2) 
r=(tha2)/(2m) z = x a  U =  (2mv)/(h2a2) (3) 

where 7, z and U, the dimensionless time, position and potential, have been expressed 
in terms of h = h / 2 q  m (the mass), and the corresponding dimensional quantities 1, 
x and V. The dimensionless potential strength parameter (height of the barrier in 
dimensionless energy units) is defined as U, = 2mVu/(a2h2). The initial Gaussian 
wavefunction at f = 0, 

+ = [ z ? ~ s ~ ] - ” ~  exp[-(x - X , , ) ~ / ( ~ S ~ )  exp[ipo(x-xu/2)] 

can also be made dimensionless by multiplying by a-‘12. At r = 0, and using (3) it is 
given by 

where zo is the centre of the packet, A2 = a2S2 is the dimensionless second moment 
(variance) of Y ( z ) Y ( z ) *  in coordinate space, and P,=p,/(ah) is the dimensionless 
initial average momentum. By Fourier transformation we obtain 

(4) 
where u2= 1/(4A2) is the dimensionless variance in momentum space, and % is the 
symbol to denote a Gaussian (normal) distribution. The dimensionless energy of the 
initial packet can be decomposed into a ‘pseudo-kinetic energy’ term, which corre- 
sponds to the kinetic energy of a classical particle with the average momentum of the 
packet, and a term due to the finite spread, 

Y = [ Z T A ~ I - ” ~  exp[-(r-zu)/(4A2)] exp[iPo(z-zo/2)] 

Y( P)Y(P)* = [ z T u ~ ] - ’ / ~  exp[-(P - P ~ ) ~ / ( Z U ~ ) ]  = %[(P- P,)/u] 

~ = ~ m ( ~ ) / ( f i ~ a ~ ) = P i + u ~  ( 5 )  

where (E) is the dimensional average energy (note that E is the true dimensionless 
kinetic energy in the asymptotic region). It is actually more convenient to characterize 
the initial wavefunction according to the variables f and r, 

f = Pi/€ r = E / U o  (6) 
instead of using A and Po.  This is partly because the range off  goes from 0 to 1 and 
the range of interest for r goes from 0 to a few units, but also because of their physical 
content: r is the ratio between the energy of the packet hnd the potential barrier and 
f the fraction of energy in the form of ‘pseudo-kinetic energy’. We shall next derive 
the classical transmittance formula. In terms of reduced quantities, and assuming that 
the classical quantum correspondence is established through the distribution of 
momenta (4), the fraction of classical particles that pass tlie bamer is given by 

exp[-(P- PU)’l(2u2)1 dP. (7) I” U:” 
T = ( 2 7 r u 2 ) - ’ / 2  



Classical transmittance and tunnelling 2005 

By means of the change of variable n = P/ one obtains: 

= 1 -??[(I - M ) / S ] .  (8) 

B[(I-M)/S] is the probability integral of the Gaussian distribution Z [ ( l F M ) / S l ,  
where M = ( fr)”’  is the mean and s2 = [(I -f)rj !he va&~ce. ~ q c a t i o ~  (8) is our 
central result. Note that the only required assumption to arrive at this expression is 
that the classical ensemble associated to the quantum state has the marginal distribution 
(4). This leaves the ensemble undetermined, but we do not need to be more specific 
for our purpose. Anyway, for more general applications, a Wigner distribution could 
be used to determine the weights. 

The form (8)  is better than (7) because we have reduced the number of relevant 
variables to two, namely, f and r. Note in particular that once these variables are fixed, 
the classical transmittance is independent of the value of the strength constant U, 
(except for the U, = 0 case; see below). It is also independent of the initial position 
of the packet, z,, which means that the width of the spreading packet in coordinate 
space at the collision is irrelevant, the only quantity of importance being the minimum 
value A at 7’0. Another interesting ‘prediction’ of (8) is that the transmittance is 
independent of the particular shape of the potential. 

Unfortunately, the quantum counterpart of (8)  is not analytical in general and has 
to be evaluated by numerically solving the time-dependent Schrodinger equation. For 
this end we have used Koonin’s method [I]  (see the appendix). We shall define the 
quantum transmittance as the probability that the particle is at the right-hand side of 
the barrier at large positive times in the case that the incident packet approaches the 
barrier from the left 

T=l im YY*dz. (9) 
r-m I:‘ 

This definition is physically meaningful, and operationally more convenient than the 
standard one, ‘the integral over all times of the particle flux observable evaluated at 
an asymptotic positive position (with positive momentum) divided by the number of 
incoming particles’ [2]. Actually the two definitions lead in many cases to essentially 
the same numerical results. (The numerical agreement can be improved by dividing 
(9) by the probability of having positive momenta in the initial distribution (4). An 
expression in coordinate space for the standard definition of the transmittance in terms 
of a double integral can be found in [2].) 

We have in figure I ( a )  and I ( b )  a comparison of the transmittances evaluated from 
(8) and (9) as a function off and r for U,= 10. The.agreement is excellent and several 
nuances of the quantum transmittance surface are perfectly (even with numerical 
accuracy) explained in classical terms. For instance, above threshold ( r >  I )  a large f 
value means that the classical distribution is peaked around Po, allowing most of the 
particles to pass. At small 1; Po is smaller and the distribution of momenta wider. As 
a consequence the transmittance decreases. Below threshold one can apply similar 
reasoning. For a peaked distribution (f close to one) it is more difficult to pass the 
barrier than for a wider one. This effect can however be compensated i f f  is large 
enough, because the average momentum grows with 1; Pn=(frUn)1’2. The result of 
these two opposite tendencies is the maximum below threshold of figure I ( a ) ,  accurately 
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reproduced in figure l(b). We can actually determine the position of the maximum 
analytically by differentiating (8) with respect to f at fixed r. The maximum is given 
by the condition 

JL?'[(l- M)/S]/Jf=%[(l- M)/S]J[(l- M)/S]/df=O 

which after straightforward operations leads to r =f: Since fS 1, we can write: 

For the quantum calculations the initial packet has been located far enough from 
the potential to make the initial potential energy negligible. Once this condition is 
fulfilled the particular position has been found to  be irrelevant, in agreement with the 
classical prediction, as far as the final value of the transmittance is concerned. (Checks 
have been done by varying zo (or equivalently T,) so as tn change the width of the 
---L..& :- "___A:-..&~ -"-- ~ :..-a -L-- t- tt.- ,,,.tt:-:-- I... cn-+-- - F  tnn \ TI.- A.+J-A yab.nrr 111 bY"L"II.'aLC uy"c',""L y,,u, L Y  Lllci C W L L L ~ L U I I  U J  a L P b L V L  U1 l""., " C L a l l C i "  

evolution and shape of the wavefunction depends, of course, on zo, but we are not 
dealing with this issue here. 

At this point it would seem that we can exactly reproduce the finest details of the 
quantum transmittance with the classical equation (8). However, the f =  1 limit is not 
represented in figure 1. Fortunately, this limit admits analytical examination. Physically 
it corresponds to stationary scattering, where the momentum distribution becomes a 
delta function. The quantum transmittance is given by [3] 

T=sinh2(?rP)/{sinh2(aP)+cos2[.rr(l -4Uo)'/2/2]) 4U0<l  (loa) 

T =  sinh2(?rP)/{sinh2(lrP) +cosh2[?r(4U0- 1)"2/2]} 4U0> 1 

while, since the limit of the classical Gaussian %[(n - M ) / S ]  asf+ 1 is a delta function, 
the classical transmittance is at this limit: 

T,,=[,m8(II-r1'2)dII 

T,,=O r < l  T,,=l r > l .  
( 1 1 )  

?%?.,is. ::ans~-i!!ancc, ~hic!: is. s!axda:d!y c=nsidered 2s the 'c!assica!' one, is in c!ear 
contrast with the quantum results. However one should note that the quantum transmit- 
tance approaches the step behaviour at large positive U,. To be exact, the limit of 
(lob) is 

T -  [l+sgn(r-1)]/2 
large U, 

where sgn is the sign distribution. 
The existence in general of a difference between (10) and ( 1 1 )  is the result of an 

exclusive quantum behaviour not described in the classical equation, namely, the 
dependence with respect to the parameter U, in addition to the parameters r and f: 
To check the importance of this effect we have performed sweeps of U, summarized 
in figure 2 for fixed r and 1: The general trend in the studied interval is a reduction of 
the classical quantum disagreement with increasing U,. By the scaling of (31, U;' is 
a measure of how quantum the system is, and the large U, limit is essentially a 
semiclassical limit. The origin of the low U, quantum behaviour is the fact that as U, 
tends to zero the quantum transmittance tends to one, disregarding a possible contribu- 
tion to the initial packet of negative momenta, or dividing T by the probability of 
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Figure 3. Transmittance against I at f = 0.7 for the potentials V (squares), Vs (triangles), 
VI (stars), V,  (asterisks) and V,  (circles) (see (12) for the definitions). broken line is 
the classical calculation. 

the transmittance of the square barrier (see, e.g., [3]). The difference at f = 1 does not 
disappear at large U, in this case. 

We should not be surprised by the disagreement with the classical transmittance 
for the square barrier since the differential equations of classical motion are singular 
(classical trajectories can however be defined for discontinuous potentials with the aid 
of variational formulation such as the least action principle). 

One important potential source of differences between the classical and the quantum 
transmittances is the existence of resonances. For example, it has been found that the 
transmittance curves for separable potentials (in the stationary limit) show interesting 
and very different shapes from the classical transmittances [4,5]. In this case however 
the classical quantum comparison for wavepackets is not trivial since the classical 
counterpart of the separable potential should consider momentum dependent forces. 
The square barrier is another case where multiple transmittance resonances are present. 

For illustrative purposes we have chosen the double barrier V,, since a nice isolated 
resonance can be studied (figure 4). This potential has been used for resonance analysis. 
in the context of s-wave scattering [ 6 ] .  In our application the boundary conditions 
imposed on the wavefunction are different and correspond to one-dimensional scatter- 
ing. Figure 4 shows a transmittance resonance peak slightly below the classical threshold 
in the stationary limit (peaked full line). The curve has been obtained by numerically 
solving the stationary Schrodinger equation at small energy intervals. (See the appendix 
for details). For f = 0.9999 (triangles) the transmittance of the time-dependent 
wavepacket still keeps the resonance features. The classical result is of course very 
different (broken line). At f = 0.99 however the resonance can no longer be recognized 
and the classical results are closer to the quantum ones. At f=0.7 classical and 
quantum results are in good agreement. This kind of behaviour can be expected in 
general, the details of the smoothing of the resonance depending on the relative widths 
oithe resonance peak and ofthe time-dependent packet. in our exampie, witn U, = 5.41, 
the half width at half height of the resonance peak is roughly 0.13 dimensionless energy 
units, equivalent to (T/2),.,=0.3 dimensionless momentum units. Using (5) and ( 6 )  
one finds that for f = 0.9999, (r/2)Gaussjan = 0.03<< r/2 while forf=0.7, (r/2)Gaussian= 
1.4>>(I'/2)res, In the case f =0.99, (r/2)Gau3sian and (r/2Ires are similar. 

.. _. 
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Figure 4. Transmittance against r at different f values for V, ( m  = a = h = I ,  V,= 2.7067, 
( U =  5.4134)). The peaked full line is the transmittance in the stationary limit (the corm 
spanding classical result is a sharp step at I = 1 ). The triangles are the quantum results for 
f = 0.9999. The broken lines are the classical predictions, and the full lines are the quantum 
calculations. 

In summary, the classical transmittance can be an excellent approximation for the 
quantum one regardless of the potential shape, provided that the potential is smooth 
and the parameter U. is large enough. A remarkable exception is the occurrence of 
quantum resonance bumps that cannot be reproduced classically. However, when 
considering wavepackets with non-zero width in momentum space (f# 1). ofthe order 
of the resonance width or larger, the resonances of the mono-energetic limit are 
smoothed out (see figure 4), so even when the potential admits resonances the classical 
transmittance can be in close agreement with the quantum one. 

3. Conclusions and discussion 

A classical formula for the transmittance through a potential barrier has been shown 
to give very good agreement with the quantum results. The cases where this is not so 
have been discussed. The formula is based on the correspondence between a Gaussian 
wavefunction and a Gaussian classical distribution of particles, and yields the fraction 
of initial particles with energy higher than the harrier maximum. The formalism has 
been cast into dimensionless form to obtain reduced general laws depending on a few 
relevant dimensionless parameters. 

A completely different approach to understand tunnelling classically, vividly 
described as ‘classical high jumping’, has been published recently [7]. The method is 
based on assigning a distribution of lengths to the classical bodies. It would be 
interesting to compare it with the present approach and see if a richer theory combining 
the two methods improves the classical results. 

The following predictions of our classical formula have been contrasted (and 
confirmed except where stated) with quantum calculations. 

(1) The transmittance does not essentially depend on the initial position of the 
packet (provided it is far enough from the potential, and the rest of the Gaussian 
parameters are fixed). 
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(2) The transmittance does not depend on the strength parameter U, for given f 
and r ratios (see text for definitions). This has been shown to be true in quantum 
mechanics for large enough Uo. 

(3) The transmittance is independent of the potential shape. The exceptions are 
the discontinuous potentials, and potentials admitting resonances (when the width of 
the packet is lower than the resonance width). 

(4) The above three statements can be summarized in one: the transmittance only 
depends on the ratiosf and r. (Again, true for large enough U,, and smooth potentials, 
with the possible exception of resonances in the mono-energetic limit.) 

( 5 )  The transmittance surface as a function off and r has a maximum a t f =  r (for 
(f< 1) which can be understood in classical terms. 

It is perhaps surprising that such an amount of detail on the transmittance can be 
derived from such a simple classical argument, especially as tunnelling is frequently 
considered one of the quintessential quantum phenomena. We believe that our study 
separates what is really quantum (resonance bumps, U, dependence,. . . ) from what 
is not (general features of the wavepacket transmittance) and points out that the 
classical quantum correspondence is better implemented at the level of phase-space 
distributions, where some of the ‘quantum’ effects admit a purely classical visualization. 
At this point we could distinguish between two different types of tunnelling: if the 
passage of the barrier when the expectation value of the energy is below threshold can 
be reproduced classically, we have ‘classical ensemble tunnelling’. The opposite case 
corresponds to ‘quantum tunnelling’. Thus, resonance tunnelling, or the tunnelling in 
the stationary limit, are purely quantum. It is interesting to notice however that, for 
the negative harmonic barrier, a classical explanation exists for the tunnelling in the 
stationary limit making use of the Wigner formalism. It is known that for quadratic 
potentials the evolution of the Wigner function is purely classical. Tunnelling is then 
due to the possibility of having ‘wrong energies’ in the Wigner distribution associated 
to the stationary scattering state [8]. 

From a practical point of view, the quantitative accuracy obtained classically and 
the simplicity of the approach warrants applications of the method in any physical 
situation where tunnelling has to be considered [9]. We have compared our classical 

00 1 I 
14 17 20 0 5  O B  I1 

ENERGY 

Figure 5. Transmittance against ‘energy’= i / l .O5 at f = 111.05, taken from [21 for v,. The 
full line is the exaa quantum result while the broken, dotted, and chain lines are different 
semiclassical approximations. The circles are obtained from the classical formula (8). 
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transmittance with various semiclassical methods used in [2] and the exact results, see 
figure 5. The classical formula (8) has the best performance and it is the easiest to 
implement. The classical transmittance should serve then as a reference test for 
semiclassical methods, and a starting point for further quantum corrections. For some 
applications, it will be necessary to obtain classical approximations for the wavefunc- 
tion, i.e. trajectories should be run with the members of the classical ensemble. For 
two or more dimensions this will be necessary in general even for calculating the 
transmittance due to the coupling between the different degrees of freedom; 

In summary, the ‘quantum’ passage through a barrier, including tunnelling, admits 
a classical qualitative and quantitative counterpart in terms of classical phase-space 
ensembles, which accurately reproduces the quantum transmittance, except in the 
following cases: in the s ta t ionaj  limit, for low U,, for discontinuous potentials, and 
when resonance widths are larger than the packet width. 
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Appendix 

In this appendix we provide some details on the quantum calculations. Koonin’s 

ization of position and time. For most of the calculations we have used a position step 
of 0.12, a time step= U,, and 2400 spatial points. The ‘infinite time’ required for 
obtaining the transmittance is actually taken as the time when the transmittance (which 
is computed at a given time interval) remains stationary. This condition cannot be 
fulfilled in the cases where the packet becomes too broad in coordinate space or when 
i! moves too fast because the boundary effects ofthe enc!oslng box canno! he neg!ectcd. 
For additional information on this point see [lo]. 

The solution of the stationary Schrodinger equation has been carried out by 
converting first this second-order differential equation into two coupled first-order 
differential equations for x = Y and y = at /az .  The system is then decomposed into 
four coupled real equations and solved with a library subroutine (IMSL‘s DGEAR). 

The initial conditions are chosen according to the outgoing boundary condition of the 
scattering function with unit outgoing density, and the ‘trajectories’ determining x and 
y are run ‘backwards’, i.e. from right to left (this amounts to considering Y* rather 
than ‘4, since the outgoing momentum is reversed). The transmittance can then be 
easily obtained from the asymptotic form on the left. As far as we know this procedure 
is described here for the first time. 

Elethnd [!j nf sn!ving !he !iEle-dependen! SchrBdinger e c p t i o n  is bnsed on f discrct- 

References 

[ I ]  Koonin S E 1985 Compulorionol Physics (Menlo Park Benjamin) 
[21 Turner R E and Snider R F 1987 1. Chem. Phys. W 910 



2012 J G Muga 

[3] Landau L D and Lifshih E M 1958 Quantum Mechanics (Reading, MA: Addison.Wesley) 
[4] Muga J G and Snider R F 1990 Can. 1. Phys. 68 403 
[5] Hammerich A D, Muga 1 G and Kossloff R 1989 Isr. 1. Chem. 29 461 
[61 Maier C H, Cederbaum L S and Domcke, W 1980 J. Phys. 8: At .  Mol. Phys. 13 L119 
[7] Cohn A and Rabinowih M 1990 In:. J. Theor. Phys. 29 215 
[8] Balazs N L a n d  Voros A 1990 Ann.  Phyr, N Y  199 123 
[9] Hauge E H and Stovneng I A 1989 Rev. Mod. Phys. 61 917 
[IO] Goldberg A, Schey H M and Schwartz I L 1967 A m .  J. Phys. 35 177 


